If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2=80
We move all terms to the left:
12x^2-(80)=0
a = 12; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·12·(-80)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*12}=\frac{0-16\sqrt{15}}{24} =-\frac{16\sqrt{15}}{24} =-\frac{2\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*12}=\frac{0+16\sqrt{15}}{24} =\frac{16\sqrt{15}}{24} =\frac{2\sqrt{15}}{3} $
| 45x+75=30x+75 | | 5n=90n= | | 30x+75=45x+75 | | -2=-5/7(4)+c | | -7/15x=49 | | 5-n=10-2n | | (3x/2)+3=15 | | 75x-30=75x+45 | | X2-2x=1 | | 3/x+1-4/5=1/x+1-6 | | 75x+30=75x+45 | | x3=32 | | 59-12d=119 | | 2u+42=9u | | -0+y=1 | | 4x+3x+3=33 | | -4.9t^2+3t+20=0 | | 5(y/8)=y+8 | | 5/4a+15=3/4a-5 | | 15-3v=15v | | (4a-4)a=6 | | 2-y=-2(y+2) | | 5x-1.8=-x+24 | | 11-1/4a=3/4a+4 | | 4/3m-7=1/3m-13 | | 1/3=(-9x2+3x-18) | | 4/3m-1=1/3m-13 | | -4(4)-2y=-6 | | -4(1)-2y=-6 | | 2(3x+13)=180 | | 2+8x-4=6.25x+26 | | -4(-2)-2y=-6 |